Embedding Levy Families into Banach Spaces

نویسندگان

  • M. Rudelson
  • R. Vershynin
چکیده

We prove that if a metric probability space with a usual concentration property embeds into a finite dimensional Banach space X , then X has a Euclidean subspace of a proportional dimension. In particular this yields a new characterization of weak cotype 2. We also find optimal lower estimates on embeddings of metric spaces with concentration properties into l ∞, generalizing estimates of Bourgain– Lindenstrauss–Milman, Carl–Pajor and Gluskin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding normed linear spaces into $C(X)$

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can ...

متن کامل

Embeddings of Levy Families into Banach Spaces

We prove that if a metric probability space with a usual concentration property embeds into a Banach space X, then X has a proportional Euclidean subspace. In particular, this yields a new characterization of weak cotype 2. We also find optimal lower estimates on embeddings spaces with concentration properties (i.e. uniformly convex spaces) into l ∞, thus providing an ”isomorphic” extension to ...

متن کامل

Embedding Functions and Their Role in Interpolation Theory

The embedding functions of an intermediate space A into a Banach couple (A0, A1) are defined as its embedding constants into the couples ( 1 α A0, 1 β A1), ∀α, β > 0. Using these functions, we study properties and interrelations of different intermediate spaces, give a new description of all real interpolation spaces, and generalize the concept of weak-type interpolation to any Banach couple to...

متن کامل

Embeddings of Proper Metric Spaces into Banach Spaces

We show that there exists a strong uniform embedding from any proper metric space into any Banach space without cotype. Then we prove a result concerning the Lipschitz embedding of locally finite subsets of Lp-spaces. We use this locally finite result to construct a coarse bi-Lipschitz embedding for proper subsets of any Lp-space into any Banach space X containing the l n p ’s. Finally using an...

متن کامل

Banach Spaces Embedding Isometrically Into

For 0 < p < 1 we give examples of Banach spaces isometrically embedding into Lp but not into any Lr with p < r ≤ 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002